Quantum Computing in Materials Science and Product Development

Bluntly, if they don’t explain the actual underlying mathematical model, then you could spend years watching and rewatching such videos, and you’d never really get it. It’s like hanging out with a group of basketball players and listening to them talk about basketball. But unless you actually spend a lot of time playing, you’re never going to learn to play basketball. To understand quantum computing, you absolutely must become fluent in the mathematical model.

“The blurred line between industry and national security in China gives them an advantage,” says David Spirk, former chief data officer at the Department of Defense. Molecules—the building blocks of the universe—are multiple atoms bound together by electrons that exist as part of each. The way these electrons essentially occupy two states at once is what quantum particles replicate, presenting applications for natural and material sciences by predicting how drugs interact with the human body, or substances perform under corrosion. Traditional manufacturing takes calculated guesses to make breakthroughs through trial and error; by mirroring the natural world, quantum should allow advances to be purposefully designed. If anything, it’s surprising that traditional computing has taken us so far. From the trail-blazing Apple II of the late 1970s … Read More

View More Quantum Computing in Materials Science and Product Development