t-Distributed Stochastic Neighbor Embedding (t-SNE)
In the majority of supervised learning applications, the ultimate goal is to develop a finely tuned predictor function h(x) (sometimes called the “hypothesis”). Semi-supervised learning falls in between unsupervised and supervised learning. Machine learning is an application of artificial intelligence that uses statistical techniques to enable computers to learn and make decisions without being explicitly programmed. It is predicated on the notion that computers can learn from data, spot patterns, and make judgments with little assistance from humans. Another important decision when training a machine-learning model is which data to train the model on. For example, if you were trying… Read More